Revie

Base your answers to questions 88 through 96 on the following information and diagram.

A 2.0-kilogram cart travels counter-clockwise at a constant speed of 6.0 meters per second in a horizontal circle of radius 3.0 meters.

- 88. Calculate the magnitude and direction of the centripetal acceleration of the cart at the position shown.
- 89. Calculate the magnitude of the centripetal force acting on the cart.
- 90. If the mass of the cart was doubled, the magnitude of the centripetal force acting on the cart would be
 - (1) halved
- (3) quartered
- (2) doubled
- (4) quadrupled
- **91.** If the radius of curvature of the path was doubled, the magnitude of the centripetal acceleration of the cart would be
 - (1) halved
- (3) quartered
- (2) doubled
- (4) quadrupled
- **92.** If the speed of the cart was doubled, the magnitude of the centripetal force on the cart would be
 - (1) halved
- (3) quartered
- (2) doubled
- (4) quadrupled
- 93. If the mass of the cart was halved, the magnitude of the centripetal acceleration of the cart would
 - (1) decrease (2) increase (3) remain the same
- 94. In the position shown in the diagram, towards which point is the centripetal force acting on the cart directed?
- **95.** In the position shown in the diagram, towards which point is the velocity of the cart directed?
- 96. Which factor, when doubled, would produce the greatest change in the magnitude of the centripetal force acting on the cart?
 - (1) mass of the cart
 - (2) radius of curvature of the path
 - (3) speed of the cart
 - (4) weight of the cart

- 97. As the time taken for a car to make one lap around a circular track decreases, the centripetal acceleration of the car
 - (1) decreases (2) increases (3) remains the same
- 98. The tangential acceleration of a cart moving at a constant speed in a horizontal circle is
 - (1) 0.0 m/s²
 - (2) 9.8 m/s² in the direction of the velocity
 - (3) constant in magnitude and directed radially toward the center of curvature
 - (4) constant in magnitude and directed radially away from the center of curvature
- 99. The centripetal acceleration of a ball of mass m moving at constant speed v in a horizontal circular path of radius r is

 - (2) constant in direction, but changing in magnitude
 - (3) constant in magnitude, but changing in direction
 - (4) changing in both magnitude and direction

Base your answers to questions 100 through 103 on the following information and diagram.

A 5.0-kilogram cart travels clockwise in a horizontal circle of radius 2.0 meters at a constant speed of 4.0 meters per second

- **100.** Towards which point is the velocity of the cart directed at the position shown?
- **101.** Towards which point is the centripetal acceleration of the cart directed at the position shown?
- 102. If the mass of the cart was doubled, the magnitude of the cart's centripetal acceleration would be
 - (1) unchanged
- (3) halved
- (2) doubled
- (4) quadrupled
- 103. The magnitude of the centripetal force acting on the cart is
 - (1) 8.0 N (2) 20. N (3) 40. N
- (4) 50. N